
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 1943–1961

www.elsevier.com/locate/jcp
A simple embedding method for solving partial
differential equations on surfaces

Steven J. Ruuth a,*,1, Barry Merriman b

a Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
b University of California, Los Angeles, CA, United States

Received 13 October 2006; received in revised form 12 June 2007; accepted 3 October 2007
Available online 22 October 2007
Abstract

It is increasingly common to encounter partial differential equations (PDEs) posed on surfaces, and standard numerical
methods are not available for such novel situations. Herein, we develop a simple method for the numerical solution of such
equations which embeds the problem within a Cartesian analog of the original equation, posed on the entire space con-
taining the surface. This allows the immediate use of familiar finite difference methods for the discretization and numerical
solution. The particular simplicity of our approach results from using the closest point operator to extend the problem
from the surface to the surrounding space. The resulting method is quite general in scope, and in particular allows for
boundary conditions at surface boundaries, and immediately generalizes beyond surfaces embedded in R3, to objects of
any dimension embedded in any Rn. The procedure is also computationally efficient, since the computation is naturally
only carried out on a grid near the surface of interest. We present the motivation and the details of the method, illustrate
its numerical convergence properties for model problems and also illustrate its application to several complex model
equations.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Closest point representations; Partial differential equations; Implicit surfaces; Finite difference schemes; Manifolds; Laplace–
Beltrami operator
1. Introduction

Many applications in the natural and applied sciences require the solutions of partial differential equations
(PDEs) on surfaces or more general manifolds. Examples of such application areas arise in biological systems,
image processing, medical imaging, mathematical physics, fluid dynamics and computer graphics. For exam-
ple, applications in image processing include the generation of textures [27,28], the visualization of vector
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.10.009

* Corresponding author.
E-mail addresses: sruuth@sfu.ca (S.J. Ruuth), barrym@ucla.edu (B. Merriman).

1 The work of this author was partially supported by a grant from NSERC Canada.

mailto:sruuth@sfu.ca
mailto:barrym@ucla.edu

1944 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
fields [7] and weathering [8], while applications in fluid dynamics include flows and solidification on surfaces
[17,18], and the problem of evolving surfactants on interfaces [29].

A popular approach to solving PDEs on surfaces is to impose a smooth coordinate system or parameter-
ization on the surface, express differential operators within these coordinates, and then discretize the resulting
equations. See, for example [10] for a tutorial and survey of methods for parameterizing surfaces. However,
the required coordinates can be complicated or impractical to construct, and the coordinates may introduce
artificial singularities, such as at the poles in spherical coordinates. Indeed, as pointed out in [10], ‘‘parame-
terizations almost always introduce distortion in either angles or some region’’. Also, equations that are simple
when written using intrinsic derivatives, such as surface diffusion, become substantially more complex when
written in a coordinate system, involving nonconstant coefficients and more derivative terms.

Another common approach to solving partial differential equations on surfaces is to solve the PDE directly
on a triangulation of the surface. This approach can be effective for certain classes of equations, however, as a
general technique it leads to a number of difficulties. These are discussed in [3,4]. In particular, this approach
leads to nontrivial discretization procedures for the differential operators, as well as difficulties in accurately
computing geometric primitives, such as surface normals and curvature [3]. In addition, convergence of
numerical schemes on triangulated surfaces remains less well understood than methods on Cartesian grids [11].

An alternative approach to treating PDEs on surfaces is to embed the surface differential equations of inter-
est within differential equations posed on all of R3, so that the solution of the embedding equations, when
restricted to the surface, provides the solution to the original problem. With such an approach, the ultimate
goal is to develop a method that allows the treatment of general, complex surface geometry, while still retain-
ing the simplicity that comes from working in standard Cartesian coordinates. With this in mind, Bertalmı́o
et al. [3] introduced an embedding method for solving variational problems and the resulting Euler–Lagrange
evolution PDEs on surfaces. In their approach, the underlying surface is represented as the level-set of a higher
dimensional function and the evolution corresponding to the surface PDEs is carried out via PDEs that are
posed on all of R3. This leads to equations that can be discretized and solved using Cartesian grid methods.
A further improvement to this method was proposed by Greer [11]. In his approach, the evolution equation is
modified away from the surface to maintain greater regularity of the solution near the surface of interest. See
also [1] for related work on the finite element approximation of elliptic partial differential equations on implicit
surfaces via level-set methods.

Embedding methods based on level-set methods have a number of limitations, however. Most obviously,
these methods do not immediately allow for open surfaces with boundaries, or filamentary objects of codimen-
sion-two or higher, although it is in principle possible to represent such objects by introducing additional level-
set functions. Another limitation is that these methods result in an embedding PDE posed on all of space, and
complications arise when they are solved in a restricted computational band around the surface. Such ‘‘narrow
banding’’ requires the imposition of appropriate boundary conditions, and how to best impose these condi-
tions is not generally understood. For example, even using the regularity improvements proposed by Greer
[11], a degradation of the order of convergence is observed when banding is used in diffusive problems. At
a more technical level, level-set based methods also either lead to degenerate diffusion equations or require
the use of an additional diffusion step when applied to parabolic equations [11].

Similar to other embedding methods, the approach we present here discretizes the partial differential equa-
tions using a fixed Cartesian grid in the embedding space. However, our method is based on the use of a closest
point representation of the surface (cf. [16]) rather than a level-set representation. In conjunction with this
change in representation, we abandon the concept of solving an embedding PDE for all time, and instead
use the embedding PDE to advance the solution near the surface for one time step (or one stage of a Run-
ge–Kutta method). This leads to a new method for solving PDEs on surfaces which has great simplicity, as
well as additional desirable features. Most importantly, the embedding PDE is the obvious analog of the sur-
face PDE, and involves only the standard Cartesian differential operators. In addition, the method can treat
open surfaces and is not limited to objects of codimension-one. It also naturally allows the computation to be
done on a grid defined in a narrow band near the surface without any degradation in the order of accuracy and
without imposing artificial boundary conditions. To distinguish our approach from other embedding proce-
dures, and to emphasize its essential reliance on the closest point representation, we refer to the method as
the closest point method. As an aside, note that a special case of this procedure was introduced in our recent

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1945
paper on the diffusion-generated motion of curves on surfaces [16]. It was in this context that the general
potential of the approach was first realized, although it occurs only as a special, simple procedure for approx-
imating in-surface curvature motion according to the diffusion-generated motion algorithm.

The paper unfolds as follows. Section 2 gives the method, describes its implementation and provides an
analysis. In Section 3, we give a number of two-dimensional convergence studies to validate the method. Sec-
tion 4 considers a variety of three-dimensional convergence tests and provides some examples that are relevant
to biology: a Fitzhugh–Nagumo and a morphogenesis simulation. In Section 5, we give a summary and dis-
cuss some of our ongoing projects in the subject. Finally, Appendix A concludes with a discussion on the com-
putation of geometric quantities defined on the surface.
2. The closest point method

In this section, we describe the method as well as its motivation, analysis and implementation. We begin by
discussing the motivation for the method and its surface representation.

2.1. The closest point representation

As part of our method, we need to rapidly and accurately extend functions defined on surfaces to a neigh-
borhood of the surface. For maximal simplicity, this extension will be chosen according to the principle that
the embedding PDE should be the natural extension of the original, i.e., we form the embedding PDE by
replacing intrinsic surface gradients with standard gradients on R3. Clearly, both evolutions cannot agree
for long times, but if we select a suitable extension the evolution of the embedding PDE will be accurate ini-
tially, which will be sufficient to update the solution in time. Thus, we will select an operator, E, that extends
functions defined on the surface to functions defined on all of R3 in such a way that the natural extension of
the surface PDE to all of space generates the required rates of change.

Note that the requirement that the all-space equation is the natural extension of the intrinsic surface equa-
tion leads to a specific class of extension operators, namely those which extend function values to be constant
along the directions normal to the surface. To illustrate this, consider the special case of the prototype Ham-
ilton–Jacobi equation defined on the surface,
ouS

ot
þ jjrSuSjj ¼ 0;
which we want to achieve for short times by treating the natural corresponding equation in all-space,
ut + i$ui = 0. If we want both equations to agree on the surface, we need the extended function E[uS] to have
only gradients along the surface directions, not normal to the surface. This means that E[uS] should be con-
stant along the directions normal to the surface, and thus E[uS] must be the extension of uS which is constant
moving normal from the surface. While extending values constant normal to the surface may be an intuitively
desirable property for the extension operator, this fundamental example shows it is in fact needed to obtain
the simplest form of the embedding equation.

Selecting an extension operator which produces a constant normal extension defines the method in general
terms. However, one ingredient which is critical to the simplicity of the resulting method is the means of actu-
ally constructing the constant normal extension. A particularly simple, accurate and efficient method for con-
stant normal extension is to make use of the ‘‘closest point’’ representation of the surface. For any point x in
R3, let CP(x) denote the closest point to x in the surface S. If S is smooth, this function is well defined and
smooth near the surface. (It will generally have discontinuities away from S, at points in space that are equi-
distant from multiple points on S. Such points do not interfere with the embedding PDE method here, which
ultimately relies only on points near S, but they may place an upper limit on grid spacing in R3, in practice.)
The closest point function provides an especially convenient representation of the surface for our purpose
because the constant normal extension operator can be defined in terms of it, simply as composition of func-
tions, according to
E½uS �ðxÞ ¼ uSðCP ðxÞÞ

1946 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
for any uS defined on S. Thus, what would otherwise be a construction process is reduced to standard eval-
uation, which greatly streamlines both the practical implementation and the theoretical analysis of the meth-
od. As a function, CP is simply a map from R3 to R3 that returns values lying in S.

Note that representing the underlying surface using the closest point function gives advantages that extend
beyond having a simple, fast and accurate extension process. With a closest point representation we enjoy the
flexibility to represent both open and closed surfaces as well as surfaces without an orientation, such as a
Möbius strip or a Klein bottle. Also, curves or ‘‘filaments’’—objects of codimension-two or higher—are nat-
urally accommodated in this representation, as are composite objects such as collections of surfaces, curves
and points. Thus, in general, the formalism places no limitations on the topology, geometry or dimensionality
of the object on which the PDE is posed.

There are a number of possible techniques to determine the closest point function if it is not already given to
us as a part of the problem. In practice, for simple surfaces such as the sphere or torus, the preferred approach
is to express the closest point function analytically. This is the approach taken for the circular, spherical and
toroidal surfaces considered in our numerical examples. For parameterized surfaces, the closest point function
can be accurately computed by standard numerical optimization techniques. See Sections 3.2, 3.3 and 4.4 for
examples involving an ellipse and a helix, and [16] for examples involving an ellipsoid and a Möbius strip.
Finally, if the surface is in a triangulated form we can either use direct methods, or efficiently determine
the closest point at the grid nodes using a variety of sophisticated algorithms, such as the tree-based algo-
rithms of Strain [25] or the public domain closest point transform of Mauch [15]. We remark that the closest
point representation for a particular shape need only to be tabulated once, since interpolation can be used to
map a well-resolved closest point representation to a desired computational grid. This implies that less efficient
(but simple) techniques for computing the closest point will often be effective, such as searching through a list
of triangles that define a triangulated surface, and evaluating the distance to each triangle analytically. In any
case, the closest point function is ultimately stored on the underlying computational grid used to discretize the
PDE of interest, which will be a uniform, Cartesian grid defined in a band around the surface. See Fig. 1 for an
example in two dimensions.

2.2. The closest point method

We now present the closest point method for evolving PDEs on surfaces.
To initialize the method we carry out several steps:
–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Fig. 1. Underlying computational grid for the unit circle. This example corresponds to a mesh spacing of Dx = 0.1 and degree-two
interpolation polynomials with a five point differencing stencil.

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1947
� If it is not already given, a closest point representation of the surface, CP(x), is constructed according to the
discussion of Section 2.1.
� A computational domain, Xc, is chosen. As is discussed in Section 2.5, the computational domain will typ-

ically consist of a band around the surface.
� The embedding of the surface PDE is found in the usual Cartesian coordinates of R3 by replacing surface

gradients by standard gradients in R3. This leads to a simpler PDE than previous embedding methods
[3,4,11] since now there is no projection matrix involved. See Sections 4 and 5 for a variety of examples
illustrating this step.
� The solution variable is initialized by extending the initial surface data on to the computational domain

using the closest point function.

The closest point method then proceeds by alternating the following two steps:

1. Extend the solution off the surface to the computational domain using the closest point function, i.e.,
replace u by u(CP) for each grid node on the computational domain.

2. Compute the solution to the embedding PDE using standard finite differences on a Cartesian mesh in the
computational domain for one time step. If a Runge–Kutta method is selected for the time evolution, a
closest point extension should be carried out after each stage, so that all quantities are evaluated at their
closest point values.

At any time step, the approximation of the surface PDE is given by the solution of the embedding PDE at
the surface itself.

We remark that the closest point extension is an interpolation step, and the order of the interpolation
should be sufficiently high that interpolation errors do not dominate the solution. Thus, for a qth-order dif-
ferencing scheme and a problem involving up to order-r derivatives the interpolation order should be order
q + r (or higher). In our experiments, we often select order q + r + 1 to give interpolation errors that are smal-
ler than other effects. Since the PDEs in this paper all give smooth solutions, polynomial interpolation is used
throughout the paper. Specifically, interpolation in multi-d is carried out using (one-dimensional) Lagrange
interpolating polynomials in a dimension-by-dimension fashion. For nonsmooth solutions, ENO [23] and
WENO [13] based interpolation are expected to give better results since they are designed to avoid interpolat-
ing across nonsmooth features.

We illustrate the main ideas of the algorithm with two examples. A justification of the method appears in
the following section.

Example 1. Consider a general prototype for a PDE describing physical processes on a surface, that allows for
reaction, advection and diffusive transport terms, written in nonconservation form as
ouS

ot
¼ F ðx; uS;rSuS ;r2

SuSÞ
where $S is the gradient intrinsic to the surface S, and r2
S is the surface Laplacian, or Laplace–Beltrami oper-

ator on the surface. Assuming a forward Euler time discretization, which may be a sub-step in a more accurate
time evolution, the corresponding surface evolution problem reads
unþ1
S ¼ un

S þ Dt � F ðx; un
S ;rSun

S ;r2
Sun

SÞ:

We do not treat this surface equation. Instead, we evolve the corresponding equation in the embedding
space,
unþ1 ¼ unðCP Þ þ Dt � F ðCP ; unðCP Þ;runðCP Þ;r2unðCP ÞÞ

where $ and $2 are the standard Cartesian derivative operators in R3, which are to be discretized on a regular
grid in R3. Thus to obtain the update of surface function, we simply update the corresponding three-dimen-
sional problem, using entirely standard discrete operators on a regular grid to evaluate the right-hand side.
The updated surface function is represented on the grid nodes. Based on these nodal values, an interpolation
step is carried out to obtain the values of u at the required surface points. This yields the arguments appearing

1948 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
in the right-hand side in the subsequent step. Note that equations written in conservation form can be handled
in the same manner by applying standard methods for discretizing equations in conservation form.

Example 2. For applications in image processing and geometry, processes defined by contour shortening
result in nonlinear, gradient-dependent diffusion equations that can be used for segmentation, noise-removal
or computation of geodesics. A suitable prototype for these gradient-dependent diffusion equations posed on a
surface is
ouS

ot
¼ F x; uS ; jjrSuSjj;rS �

rSuS

jjrSuS jj

� �
:

Consider a forward Euler time discretization, which again may be a sub-step in a more accurate time evolu-
tion. Then, the surface update equation is formally
unþ1
S ¼ un

S þ Dt � F x; un
S ; jjrSun

S jj;rS �
rSun

S

jjrSun
S jj

� �
:

To solve, we extend the initial conditions on to the computational domain using u0 � u0
SðCP Þ and solve using

the standard spatial discretization of the corresponding embedding problem
unþ1 ¼ unðCP Þ þ Dt � F CP ; un; jjrunjj;r � runðCP Þ
jjrunðCP Þjj

� �
:

Numerical experiments for the special case of curvature-driven motion of curves on surfaces are presented in
Section 4.3 (this same application is studied in [6] using level-set methods). Note that general nonlinear, gra-
dient-dependent diffusion terms can be handled in a similar manner, as described in the following section.
2.3. Analysis of the closest point method

We now give an analysis of the closest point method. We will not attempt the rigorous convergence theory,
but rather we shall simply show that the method is formally consistent with the original surface PDE.

First, let $S and $SÆ denote the intrinsic surface gradient and divergence operators, which are well defined
for any quantities defined on the surface. Rather than work with abstract tangent vectors to the surface this
section makes use of the corresponding vectors tangent to the surface, as embedded in R3. Thus, for example,
$Su(x) denotes a vector in R3 lying in the plane in R3 that is tangent to S at x 2 S. Having made this conven-
tion, we can proceed with the analysis by stating two fundamental properties

1. Suppose u is any function defined on R3 that is constant along the directions normal to the surface. Then, at
the surface,
ru ¼ rSu:
2. For any vector field v on R3 that is tangent at S, and also tangent at all surfaces displaced by a fixed distance
from S (i.e., all surfaces defined as level-sets of the distance function to S), then at the surface
r � v ¼ rS � v:

Intuitively, these are quite obvious statements. The first condition says that a function that is constant in the
normal direction only varies along the surface, while the second condition says that a flux that is everywhere
directed along the surface can only spread out within the surface directions.

Now, in particular, if u is a function defined on the surface, u(CP) is constant along the directions normal to
the surface, so the first principle implies
ruðCP Þ ¼ rSu:
Moreover, $u(CP) is always tangent to the level-sets of the distance function, so applying the second principle
gives

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1949
r � ðruðCP ÞÞ ¼ rS � ðrSuÞ

which is the result for the surface Laplacian. More generally, we may consider a surface diffusion operator
$S Æ (a(x)$Su), where the diffusion coefficient depends on position. In this case, v = a(CP)$(u(CP)) is an exten-
sion of a$Su to R3 that is tangent to the level surfaces, which implies
rS � ðarSuÞ ¼ r � ðaðCP ÞruðCP ÞÞ:

Generalizing to more complicated diffusion relations, if the coefficient is a = a(x, u, $Su), it still follows that
v = a(CP, u(CP), $u(CP))$(u(CP)) is a tangential extension off the surface. Thus,
rS � ðarSuÞ ¼ r � ðaðCP ; uðCP Þ;ruðCP ÞÞruðCP ÞÞ:

These same results would hold if the diffusion ‘‘coefficient’’ a was actually a diffusion matrix, as well.

For the most general diffusion form, suppose f(x, u, $Su) is an arbitrary ‘‘diffusive flux’’, i.e. a tangent vec-
tor field f(x, u, $Su) that has any functional dependence on position, x, a scalar value, u, and a tangent vector,
$Su. Then v = f(CP, u(CP), $u(CP)) is an extension of this field that is tangent to all level surfaces, and so
again by the general principle we have
rS � ðf ðx; u;rSuÞÞ ¼ r � ðf ðCP ; uðCP Þ;ruðCP ÞÞÞ ð1Þ

which covers a very broad class of second-order operators, including the level-set equation for curvature mo-
tion of contours on the surface and other nonlinear diffusion models described in our second example above.
Thus, we find that by extending quantities on to the computational domain and by replacing the first- or sec-
ond-order surface derivatives by the standard derivatives in R3 we obtain precisely the desired evolution on the
surface itself for a very broad assortment of second-order PDEs.

2.4. Extension to general PDEs

While the method as presented covers a great variety of PDEs of common interest, the basic formalism out-
lined above is not consistent for general equations with derivatives of more than second-order, or even for the
most general possible second-order equation that involves the full second derivative matrix (Hessian). How-
ever, for completely general equations, a minor modification given at the end of this section provides a con-
sistent formalism. This comes at the cost of a slightly more complicated procedure, but one that still preserves
the essential goal of solving the equation using only the analogous equation on R3, and discretizations of stan-
dard differential operators on uniform grids.

To treat high-order derivatives, one could adopt the approach of other embedding methods [3,11] and
introduce an operator which projects on to the tangent plane defined by the local level-set of the signed dis-
tance function /, e.g.,
P ¼ I �r/�r/:
By inserting sufficient projections P into the derivative expressions we can obtain any desired intrinsic surface
derivatives. However, this approach has the disadvantage that it introduces explicit projection operators, as
well as derivatives of the projection operator at higher orders. This adds a degree of complication to the ap-
proach, and also may result in degenerate equations which are relatively poorly behaved. For example, appli-
cation of the projection methodology to the surface Laplacian problem leads to a degenerate diffusion
equation,
ou
ot
¼ r � Pruð Þ;
an equation whose treatment requires more care than a standard diffusion equation [11].
Alternatively, it is possible to handle equations of higher order simply by successively re-extending the gra-

dients themselves. That is, we replace the terms u,$Su, SSu successively as follows: u is replaced by u(CP),
and $u(CP) replaces $Su. This is then extended as ($u(CP))(CP), and SSu is replaced by $(($u(CP))(CP)).
Further high derivatives are evaluated by extending a lower derivative (which is defined on all space) using a
closest point extension, and then taking the all-space gradient of this extended function. This has the net effect

1950 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
of trading off all the ‘‘outer’’ application of projections and their derivatives, which is somewhat complicated,
for ‘‘inner’’ application of the just the CP operator itself, which is trivial. Thus, formally we can embed the
higher order operator
F u;rSu;rSrSu; . . .ð Þ

as
F uðCP Þ;ruðCP Þ;rððruðCP ÞÞðCP ÞÞ; . . .ð Þ

and otherwise the procedure remains unchanged. Note, however, that we have already seen that a simplifying
case arises for powers of the Laplace–Beltrami operator, since the Laplacian is extended correctly by the basic
closest point extension. For example, the surface biharmonic operator is given by
ðr2
SÞ

2u ¼ r2ððr2uðCP ÞÞðCP ÞÞ

and similarly for higher powers, so that only half as many closest point re-extensions are required for this spe-
cial, but important, class of operators. The same is true for the more general diffusive flux operator (1) so that
we only need to re-extend iterates of this second-order operator, rather than all first-order derivatives
involved.

2.5. Banding

Within the class of embedding methods, the closest point method is distinct in a number of respects. For
example, it represents the surface using the closest point function. The closest point method also differs in that
it makes use of the obvious and familiar Cartesian analog of the underlying surface PDEs instead of using
projection operators when forming the embedding PDEs. Another distinction between the closest point
method and other embedding methods relates to how the embedding PDEs are used and how this influences
the development of practical algorithms based on narrow banding. We now elaborate on this last point.

To obtain efficient algorithms, any embedding method should treat the embedding PDE on a narrow band
Xc ¼ fx : jjx� CP ðxÞjj2 6 kg
surrounding the surface, where k is the bandwidth. All previous embedding methods treat an underlying
embedding PDE which is defined on all of space and whose solutions, when restricted to the surface, solve
the original surface PDE for all times t. Limiting the computation to a narrow band complicates the solution
considerably for a number of reasons:

� Solving the embedding PDE on the band requires the imposition of artificial boundary conditions at the
boundaries of the computational band since the embedding PDE is defined throughout space and time.
The selection of these boundary conditions is not well understood, and may lead to a degradation of the
order of accuracy when the bandwidth varies according to the mesh spacing.
� The choice of the bandwidth, k, is unclear, and is not justified by analytical arguments. Even imperically,

the optimal choice of bandwidth remains unclear.
� To improve regularity and limit the effects of the artificial boundaries, methods must be introduced to prop-

agate quantities off the surface on to the band.

The evolution strategy for the closest point method is fundamentally different. The embedding PDE only
agrees with the underlying surface PDE when the values off the surface correspond to a constant normal exten-
sion of the surface data. Clearly, the necessity of such special data implies that the embedding PDE cannot
give a solution to the underlying surface flow for all times, t. On the other hand, the embedding PDE is ini-
tialized using a constant normal extension and, according to the analysis of Section 2.3, this implies that the
embedding PDE and the surface PDE agree at the surface initially. With explicit time-stepping, this is all that
is required for consistency since the subsequent closest point extension step gives a constant normal extension
of the surface data that is suitable for the next step of the algorithm. This clear separation of the evolution at
the surface, and extension throughout space greatly simplifies narrow banding because it does not introduce

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1951
artificial boundaries (while still automatically enforcing the regularity of the solution). Indeed, in a banded
calculation with explicit time-stepping, the closest point method gives exactly the same result at the surface
as an all-space calculation provided the bandwidth is sufficiently wide. We now provide details on selecting
such a bandwidth k.

Suppose that we are working in d-dimensions. Our interpolation will be carried out dimension-by-dimen-
sion using one-dimensional Lagrange interpolating polynomials of degree-p with interpolation nodes chosen
in the most symmetric way possible around the interpolation point (see, e.g., Fig. 2). Other nonsymmetric
interpolation techniques (e.g., ENO and WENO) may also be used and will typically lead to somewhat larger
computational bands. To obtain a bound on the bandwidth, we consider an arbitrary point x lying on the
surface. Each polynomial interpolation requires that the (p + 1)d nodal values arising in the interpolation sten-
cil have been evolved accurately. Each nodal value will depend on its neighbors, according to the differencing
stencil which is used in the PDE evolution step. Calling the set of all such neighbors N , it is clear that a bound
on the bandwidth is given by the maximum Euclidean distance from x to a grid node belonging to N .

This calculation is most easily illustrated by an example. Suppose that we work with degree-three interpo-
lation polynomials (p = 3) and that the standard five-point Laplacian is used in two-dimensions (d = 2). As is

shown in Fig. 2, no grid node in the stencil lies more than a distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 22

p
Dx from x. But the value at this

grid node will depend on its four closest neighbors, so the relevant band must also include those points. This

leads to a bandwidth of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 32

p
Dx. More generally, carrying out this calculation in d-dimensions for the sec-

ond-order centered difference Laplacian and gradient operators considered in this paper leads to the band-
width value
Fig. 2
perspe
interpo
the int
k ¼

ffi
ðd � 1Þ p þ 1

2

� �2

þ 1þ p þ 1

2

� �2
s

Dx:
Sharp bounds on the bandwidth for other differencing or interpolation stencils may be determined in a similar
manner.

In practice, it is straightforward to code narrow banding. Similar to a global computation, we maintain a
uniform mesh of grid nodes in the embedding space to store the extended function and the closest point func-
tion. However, an indexing array stores the indices corresponding to all the nodes within the band. Thus, a
banded calculation is carried out by limiting calculations to those nodes appearing in the indexing array. Note
that in the computations appearing in this paper, the cost of evolving the embedding PDE is less than the
interpolation cost, so we may estimate the overall cost per step of the algorithm to be the number of points
in the band times the cost of each interpolation. One may carry out the polynomial interpolation dimension-
by-dimension using one-dimensional barycentric Lagrange interpolation [2]. This leads to a total cost of O(pd)
operations per interpolation. Alternatively, the well-known Newton divided difference form [5] may be used to
*

+ +

. Interpolation stencil corresponding to degree-three interpolation polynomials for a point ‘‘+’’. Left: From a bandwidth
ctive, the grid is optimal for interpolating at the point in question since no stencil node lies more than a distance 1:5

ffiffiffi
2
p

Dx from the
lation point. Right: For this grid, the most symmetrical interpolation stencil will have some grid point ‘‘*’’ a distance 2

ffiffiffi
2
p

Dx from
erpolation point. The bandwidth will be determined by the distance from the interpolation point to the nearest neighbors of ‘‘*’’.

1952 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
evaluate the interpolating polynomials, but this is more expensive and gives a total of O(pd+1) operations per
interpolation.
3. Numerical experiments in 2D

We now provide some studies of numerical convergence in two dimensions. In all of our examples analyt-
ical solutions are determined from the corresponding one-dimensional periodic systems.

For simplicity, second-order centered differences are used to carry out spatial discretizations and all time-
stepping is carried out explicitly (using forward Euler or the third-order TVD Runge–Kutta method). All com-
putations are carried out on a uniform grid defined on the relevant computational band. See Section 2.5 for
details on this localization technique.

3.1. Diffusion equation

Consider first diffusion on the unit circle. Following [11], an initial profile
Table
Max-n

Dx

0.2
0.1
0.05
0.025
0.0125
0.0062
uSðh; 0Þ ¼ sinðhÞ
is assigned, which implies that the solution at any time t is given by
uSðh; tÞ ¼ expð�tÞ sinðhÞ:
We apply the closest point method to the problem using an analytical representation of the closest point func-
tion. Time-stepping is carried out using forward Euler with a time step-size Dt = 0.1Dx2 and all interpolations
are accomplished with degree-four interpolation polynomials.

The relative errors in the result at the final time t = 1 were computed on the circle using the max-norm for a
variety of Dx-values. These results are reported in Table 1.

As expected from the order of the spatial discretization, these results give a second-order error in the value
of u. We remark that the errors and convergence rates represent an improvement over those reported for a
recent embedding method when computing on a band that adapts to the mesh size. See [11] for the results
using that level-set based method.

3.2. Advection equation

Our second test evolves a smooth initial profile on the ellipse
x2

a2
þ y2

b2
¼ 1; a ¼ 0:75; b ¼ 1:25 ð2Þ
according to the advection equation,
ouS

ot
þ ouS

os
¼ 0;
where s is the arclength along the curve.
1
orm relative errors for the heat equation on a circle

Error Conv. rate

1.03e�02
2.51e�03 2.04
6.26e�04 2.00
1.54e�04 2.02
3.84e�05 2.00

5 9.63e�06 2.00

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1953
The embedding partial differential equation is
Table
Max-n

Dx

0.2
0.1
0.05
0.025
0.0125
0.0062
ou
ot
þ T ðx; yÞ � ru ¼ 0;
where the velocity
T ðx; yÞ ¼ V ðCP ðx; yÞÞ ð3Þ

is an extension of the value defined on the ellipse itself
V ððx; yÞÞ �
ð� y

b2 ;
x

a2Þffiffiffiffiffiffiffiffiffiffiffiffi
y2

b4 þ x2

a4

q :
The closest point representation of the ellipse is precomputed on the underlying grid (to double precision)
using Newton’s method applied to the derivative of the square of the distance function.

We consider the initial profile
uSðs; 0Þ ¼ cos2ð2ps=LÞ;

where s is arclength and L � 6.38174971583483 is the perimeter of the ellipse (cf. [11]). Our computations mea-
sure the max-norm of the difference between our computed solution and the exact solution,
uSðs; tÞ ¼ cos2ð2pðs� tÞ=LÞ

for several different grid spacings to estimate the convergence rate.

Because second-order central differences are used, we must use a time-stepping scheme that includes the
imaginary axis near the origin to achieve linear stability. For this reason, we use the popular third-order
TVD Runge–Kutta scheme [23,22]. In all calculations, the time step-size is set according to Dt = 0.5Dx and
we use third-order interpolation polynomials to carry out interpolations. Note that simple second-order cen-
tral differences are effective for this smooth problem. If upwinding is required for the embedding PDE, how-
ever, it may make sense to also use an interpolation step which is nonsymmetric. An example of such an
interpolation appears in [14], where a WENO-based interpolation procedure and standard WENO methods
for Hamilton–Jacobi PDEs are used to solve level set equations on surfaces.

The relative errors at time t = 1 for a number of experiments are reported in Table 2, below.
These results clearly demonstrate second-order convergence in the value of u. Thus, both the closest point

method and the recent level-set method of Greer [11] give second-order convergence when the bandwidth is
adapted to the mesh-size. A direct comparison of the errors cannot be made in this example since we have
treated an ellipse rather than a circle.

3.3. Advection–diffusion equation

We conclude our examples in R2 with the evolution of a smooth initial profile on the ellipse (2) according to
the advection–diffusion equation,
ouS

ot
þ ouS

os
¼ o2uS

os2
;

where s is the arclength along the curve.
2
orm relative errors for the advection equation on an ellipse

Error Conv. rate

3.88e�02
6.89e�03 2.49
1.72e�04 2.00
4.30e�04 2.00
1.07e�04 2.00

5 2.68e�05 2.00

1954 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
The embedding partial differential equation is
Table
Max-n

Dx

0.1
0.05
0.025
0.0125
0.0062
0.0031
0.0015
ou
ot
þ T ðx; yÞ � ru ¼ r2u
with velocity T(x, y) as defined in (3). In this example, we consider the initial profile
uSðs; 0Þ ¼ sin2ð2ps=LÞ;

where s is arclength and L is the perimeter of the ellipse (cf. [11]). Our computations measure the max-norm of
the difference between our computed solution and the exact solution,
uSðs; tÞ ¼ expð�4tÞ sin2ð4pðs� tÞ=LÞ
for several different grid spacings to estimate the convergence rate. To ensure stability, time-stepping is carried
out using forward Euler with a time step-size Dt = 0.1Dx2. All interpolations are carried out using degree-four
polynomials.

The relative errors arising at time t = 1 for a number of experiments are reported in Table 3.
This convergence test also indicates a second-order convergence in the value of u. Similar to the case of

diffusion, the convergence rates represent an improvement over those reported for a recent level-set based
method [11] when computing on a band that adapts to the mesh size.

4. Numerical experiments in 3D

We now examine the numerical behavior of the method in three dimensions. Where analytical solutions
exist, numerical convergence studies are carried out.

Similar to the previous section, second-order centered differences are used to carry out spatial discretiza-
tions and all time-stepping is carried out explicitly (using forward Euler or the third-order TVD Runge–Kutta
method). All computations are carried out on a band around the surface.

4.1. Diffusion equation

Consider diffusion on the unit sphere. Following [11], we assign initial conditions
uSðh; g; 0Þ ¼ cosðgÞ
in spherical coordinates (r, h, g). As pointed out in [11], the corresponding initial value problem has exact
solution
uSðh; g; tÞ ¼ expð�2tÞ cosðgÞ:

The evolution is carried out using an analytical representation for the closest point function. Time-stepping

is carried out using forward Euler with a time step-size Dt = 0.1Dx2 and degree-four polynomials are used to
carry out interpolations. Calculating the max-norm relative error of the numerical result at the final time t = 1
for several Dx-values gives the results reported in Table 4.
3
orm relative errors for the advection–diffusion equation on an ellipse

Error Conv. rate

4.72e�02
3.85e�03 3.62
1.09e�03 1.82
2.96e�04 1.88

5 7.48e�05 1.98
25 1.88e�05 2.00
625 4.69e�06 2.00

Table 4
Max-norm relative errors for the heat equation on a sphere

Dx Error Conv. rate

0.2 7.49e�03
0.1 2.14e�03 1.81
0.05 5.19e�04 2.05
0.025 1.30e�04 2.00
0.0125 4.38e�05 2.00

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1955
This convergence test also indicates a second-order convergence in the value of u. Similar to the two-dimen-
sional case, the errors and convergence rates represent an improvement over those reported for a recent level-
set based method applied to a band that adapts to the mesh size [11].

4.2. Advection equation

To study the numerical convergence for advection on a surface, we consider the example provided in [11].
Specifically, we evolve on a torus defined by
Table
Max-n

Dx

0.1
0.05
0.025
0.0125
0.0062
1

2
cosðgÞ þ 1

� �
cosðhÞ; 1

2
cosðgÞ þ 1

� �
sinðhÞ; 1

2
sinðgÞ

� �
; �p 6 h; g < p
according to the advection equation ouS
ot þ

ouS
og ¼ 0: The initial conditions are set equal to
uSðh; g; 0Þ ¼ f ðgÞ;
where f is the smooth function of period 2p defined by
f ðgÞ ¼
gðgþp

p Þ �p 6 g 6 0

gðg�p
p Þ 0 < g < p

(
with gðxÞ ¼

expð 1
x�1
Þ � expð� 1

xÞ
expð� 1

xÞ þ expð 1
x�1
Þ :
Computing using second-order centered differences, the third-order TVD Runge–Kutta scheme and degree-
three interpolation polynomials with a time step-size Dt = 0.5Dx and varying Dx gives us a sequence of solu-
tions. The corresponding max-norm relative errors at time t = 1 are reported in Table 5.

This convergence test also indicates a second-order convergence in the value of u. Thus, both the closest
point method and the recent level set method of Greer [11] give second-order when the bandwidth is adapted
to the mesh-size. The errors generated by both methods for a particular mesh size are also very similar.

4.3. Curvature motion

Consider next the motion of a circular interface on a sphere evolving according to in-surface curvature
motion. By symmetry, the interface remains a circle as it collapses. Moreover, it is straightforward to deter-
mine the state of the system at any time t since the radius of the collapsing circle is governed by an ODE sys-
tem which can be solved to high precision with standard ODE methods.
5
orm relative errors for the advection equation on a torus

Error Conv. rate

3.82e�02
1.00e�02 1.93
2.44e�03 2.04
6.57e�04 1.89

5 1.62e�04 2.02

1956 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
We represent the evolving contour by the zero level of the function / which is initially set equal to
ð2=3Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
. To achieve curvature motion, we wish to evolve / according to the embedding of the sur-

face PDE,
Table
Max-n

Dx

0.05
0.025
0.0125
0.0062
o/S

ot
� rS �

rS/S

jjrS/Sjj

� �
jjrS/S jj ¼ 0:
In our formulation, we therefore proceed simply by evolving the three-dimensional level-set equation,
o/
ot
� r � r/

jjr/jj

� �
jjr/jj ¼ 0:
where j ¼ ðr � r/
jjr/jjÞ is the mean curvature of the local level-set in R3. Similar to our other examples, the re-

quired initial conditions are obtained by extending the initial conditions on to the computational band using
the closest point extension.

We select the sphere radius to be 1 and the initial radius of the circle to be 2/3. To discretize in time, forward
Euler is used with a time discretization parameter Dt = 0.1Dx2. Degree-four polynomials are used to carry out
all interpolations. Convergence is studied by comparing the numerical radius at time t = 0.1 against the exact
result (0.56695935668549) for various Dt. The relative errors in the final radius from a number of experiments
are reported in Table 6.

This convergence test indicates a second-order convergence in the value of the circle radius.

4.4. Diffusion on a filament

Our final convergence test considers diffusion of a smooth initial profile on a helical curve
ðx; y; zÞ ¼ ðsinð2psÞ; cosð2psÞ; 2s� 1Þ ð4Þ

where 0 6 s 6 1 and homogeneous Neumann and Dirichlet conditions are imposed at the endpoints s = 0 and
s = 1, respectively. Note this example involves a codimensional-two object with boundaries, so it is much more
naturally treated using a closest point representation than a level-set representation. The closest point repre-
sentation of the helix is precomputed on the underlying grid (to double precision) using Newton’s method ap-
plied to the derivative of the square of the distance function.

To examine the numerical convergence, we consider the initial profile
uSðs; 0Þ ¼ cosð0:5psÞ:

Our computations measure the max-norm of the difference between our computed solution and the exact
solution,
uSðs; tÞ ¼ exp � p
2L

� �2

t
� �

cosð0:5psÞ
where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2
p

is the length of the helix.
No special treatment is required at the homogeneous Neumann boundary since the value at that endpoint is

naturally extended throughout space at each step using the closest point function. At the homogeneous Dirich-
let condition the treatment is also straightforward: instead of propagating out the numerical value at that end-
point, we propagate out the prescribed boundary value (in this case uS(1, t) = 0).
6
orm relative errors for curvature motion on the sphere

Error Conv. rate

3.35e�04
8.22e�05 2.03
2.05e�05 2.01

5 5.11e�06 2.00

Table 7
Max-norm relative errors for diffusion on a helix with boundary conditions

Dx Error Conv. rate

0.2 1.53e�02
0.1 7.64e�03 1.01
0.05 3.82e�03 1.00
0.025 1.91e�03 1.00
0.0125 9.54e�04 1.00

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1957
Time stepping is carried out to time t = 1 using forward Euler with Dt = 0.1Dx2. Evaluating the max-norm
relative errors for several different grid spacings gives the numerical convergence rate results presented in
Table 7. Our interpolations are carried out using degree-three polynomials since higher orders did not signif-
icantly influence the errors.

As we can see from the table, the introduction of simple boundary conditions gives a consistent calcu-
lation, however, the result is only first-order accurate. When boundary conditions are enforced in this
manner, the extended function is continuous but certain derivatives may be discontinuous near the bound-
aries. (In this example, discontinuities in the first derivatives occur on a planar region which is orthogonal
to the filament at the Dirichlet boundary, s = 1. Discontinuities in the second derivatives occur on a pla-
nar region which is orthogonal to the filament at the homogeneous Neumann boundary, s = 0.) This loss
of regularity contributes to a loss of accuracy in the interpolation procedure and the discretization of the
embedding PDE.

The development of methods that gives an improved treatment of boundary conditions is of strong interest
to us and is a part of our ongoing investigations.

4.5. Reaction diffusion systems

We conclude our numerical experiments by providing some applications to reaction diffusion systems.
Fig. 3 gives an example of a spiral wave evolving on a sphere, as computed by our approach. The simulated

system in this example is the well-known Fitzhugh–Nagumo equations [9]
ouS

ot
¼ ða� uSÞðuS � 1ÞuS � vS þ mr2

SuS ; ð5Þ

ovS

ot
¼ �ðbuS � vSÞ; ð6Þ
where uS is the excitation variable, � = 0.01, a = 0.1, b = 0.5 and m = 0.0001. To obtain an attractive spiral
wave, we set our initial conditions according to
ðuS ; vSÞ ¼
ð1; 0Þ if x > 0; y > 0; z > 0;

ð0; 1Þ if x < 0; y > 0; z > 0;

ð0; 0Þ otherwise:

8><
>:
This simulation set Dt = 0.0390625 and Dx = 0.00625. Doubling these discretization step sizes gave very sim-
ilar results.

Fig. 4 gives an example of a Turing pattern formation model [26] evolving on the surface of a U-shaped
tube, as computed by our approach. The simulated system in this example is the Schnakenberg system [21],
ouS

ot
¼ cða� uS þ u2

SvSÞ þ r2
SuS ; ð7Þ

ovS

ot
¼ cðb� u2

SvSÞ þ mr2
SvS ; ð8Þ
where uS is the activator and vS is the inhibitor. To perturb the system away from equilibrium, we set the initial
conditions at each point (x, y, z) on the surface according to

Fig. 3. Fitzhugh–Nagumo equation evolving on a sphere. The excitation variable u is displayed at times t = 375, 437.5, 500 and 562.5.
This simulation takes Dt = 0.0390625, D x = 0.00625 and uses an analytical representation of the closest point to the sphere. Forward
Euler time-stepping and degree-four interpolating polynomials are used throughout the calculation.

Fig. 4. Schnakenberg system evolving on a U-shaped tube. The activator u is displayed at times t = 0.01, 0.03, 0.05, 0.13. This simulation
takes Dt = 1.5625e�07, Dx = 1/160 and uses an analytical representation of the closest point to the tube. Forward Euler time-stepping and
degree-three interpolating polynomials are used throughout the calculation.

1958 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
uSðx; y; zÞ ¼ aþ bþ
X5

i¼1

1

20i
sinð2pixÞ sinð2piyÞ sinð2pizÞ;

vSðx; y; zÞ ¼
a

ðaþ bÞ2
þ
X5

i¼1

1

20i
cosð2pixÞ cosð2piyÞ cosð2pizÞ:
In this calculation steady patterns are sought, so the free parameters are set according to some values appear-
ing in [19]: c = 500, a = �.048113, b = 1.202813 and m = 120. This simulation took Dt = 1.5625e�07 and
Dx = 1/160, and we note that doubling these discretization step sizes produced similar results. Because this
problem is numerically stiff, implicit time-stepping would be highly desirable. A focus of our current work
is the design of efficient methods for treating implicit time-discretizations using the closest point method.

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1959
5. Summary and future work

In this work, we present the closest point method, which is a new embedding method for solving partial
differential equations on surfaces. The method is designed to make solving PDEs on surfaces as close as
possible to the familiar process of solving PDEs in R3, in effect hiding all the geometric complexities. Cen-
tral to the method is the choice of the closest point representation of the surface. This representation nat-
urally gives an extension step which leads to embedding PDEs that are simply the surface PDEs with
surface gradients replaced by standard gradients in R3. This representation also gives the flexibility to treat
open surfaces, surfaces without orientations, objects of codimension-two or higher or collections of objects
with varying codimension. We further remark that it is straightforward to compute on a narrow band
around the surface using the closest point method and that (unlike other embedding methods) banding
can be carried out without any degradation in the accuracy of the underlying discretization. The net result
is that the method is remarkably simple: instead of treating a surface PDE it treats the corresponding PDE
in the embedding space using standard numerical methods on uniform Cartesian grids. This means that
existing software for three-dimensional flows can be modified to carry out surface flows with the minimal
programming effort.

A variety of numerical experiments were carried out to validate the method. It was found that the numerical
convergence rates agreed with the convergence rates of the underlying spatial discretizations. The errors pro-
duced by the method for a given mesh width were similar or better than those reported for a recent embedding
method [11].

There are many opportunities for further development of the closest point method. In particular, we are
investigating the use of ENO and WENO based interpolation to give methods suitable for nonsmooth flows
(e.g. [14]). The generalization of the method to implicit time-stepping and elliptic equations on surfaces is also
of strong interest to us, since many flows are too stiff to be conveniently treated by explicit methods (e.g. [12]).
Formally, the analysis developed in Section 2.3 still applies to such equations, however, the solution of the
corresponding nonlinear equations will be complicated by the closest point operator. Another area of research
interest is the improved treatment of boundary conditions for open surfaces. In this paper, first-order accuracy
was obtained using a straightforward extension of boundary data but we anticipate more sophisticated meth-
ods should yield more accurate results.

The study of more general flows or flows on more general objects is also of interest. For example, the treat-
ment of third- and higher-order PDEs should be further investigated. While such applications can be solved
using multiple applications of the closest point mapping, we have not yet investigated this class of problems
numerically. Other potential targets for future work include solving PDEs on surfaces with edges/corners, or
even point clouds of data, as the general closest point method formalism still applies even when the underlying
notion of a PDE on the object is no longer clearly defined.

While this paper focuses on the important case of static surfaces, the treatment of moving surfaces also
appears in applications (e.g., [29]) and is another interesting topic for investigation. In such applications, it
is important to note an advantage that level-set representations have over closest point representations:
level-set representations of surfaces can be evolved using well-known and robust discretizations of the
level-set equation, whereas the evolution of closest point representations is less well understood (cf.
[24,20]). This advantage is particularly pronounced in flows involving surfaces that merge or break apart, since
level-set methods treat such problems naturally and automatically.

Finally, we conclude by noting that the closest point method’s simplicity and flexibility make it an excellent
candidate for treating areas of application in the natural and applied sciences. See [27,28,7,8,17,18] and the
references in [3,11] for a sample of some application areas that treat PDEs on surfaces.

Appendix A. Calculation of surface normal and curvature

The surface normal and curvature are fundamental geometric properties of the surface, and are of interest
for a variety of purposes. In the context of solving surface PDEs, our main concern is that such quantities
could occur explicitly within the PDE, for example, in the form of a curvature-dependent reaction rate in a
reaction diffusion equation.

1960 S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961
If these geometric quantities are available as a given function on the surface, our general formalism would
immediately apply. However, it is more likely that they will actually need to be computed from the surface
itself, prior to any extension. Thus, we provide a convenient way to compute these quantities directly from
the closest point representation of the surface, CP(x).

First, consider constructing a normal vector field, N. In terms of the closest point function, this is quite
simple. Given any point x in R3, the vector x � CP(x) extends from the surface at CP(x) to the point x, in
a direction normal to the surface. Thus, normalizing this vector field
NðxÞ ¼ x� CP ðxÞ
jjx� CP ðxÞjj
provides a suitable extension of the normal where the direction points away from the surface. In some applica-
tions, the fact that the vector field N changes direction discontinuously at the surface may preclude the imme-
diate use of this formula. For example, the discontinuity at the surface is undesirable in the curvature formulas
below. For such situations, we need to make a choice of one of the two available directions at the surface as
the preferred direction, and reverse the direction of N on the other side. This choice can be encapsulated in a
sign function s(x) defined near the surface that is +1 on one side of surface, and �1 on the other. This is in
effect a choice of ‘‘outward normal direction’’, or orientation, for the surface, which is always needed to define
the overall sign of the curvature, independent from the issues at hand. Given such a sign function, then the
vector field
nðxÞ ¼ sðxÞNðxÞ ð9Þ
is a suitable extension of a unit normal field on the surface to all of space. Note this is not strictly defined at the
surface, since N(x) is not defined there. At such points, however, N(x) can be assigned its limiting value,
approaching from off the surface.

The sign function s(x) must somehow be constructed independently, as it is not determined by the surface
itself, or the closest point function. For example, if the surface is closed, with a well-defined inside region, the
indicator function of this inner region can be used to define s. Or, if a signed distance function is available, the
sign from that can be adopted for s.

For general curvature flows we may compute curvature from an extension of the unit normal vector field.
Specifically, let n be a unit vector field defined on R3 that reduces to a unit normal vector field along the sur-
face. Then the mean curvature of the surface, j, is given by the divergence of this vector field
j ¼ r � n

at the surface, and this relation provides a convenient embedding of the mean curvature off the surface as well.
More generally, all properties of the curvature can be obtained from the curvature matrix K, which can be
computed as the total derivative of the normal vector field
K ¼ rn
at the surface, and similarly using this formula to extend K off the surface. The matrix K has n itself as a trivial
eigenvector, with eigenvalue 0, reflecting the constant length of n. The nontrivial eigenvectors of this matrix
are tangent to the surface and define the directions of principal (maximal and minimal) curvature, and the
corresponding eigenvalues j1 and j2 are the principal curvatures at the point in question. The mean curvature
is the sum of these principal curvatures, or, equivalently, the trace of the matrix K, which yields the divergence
formula given previously.

Alternatively, certain curvature-dependent quantities can be obtained from the closest point function itself.
For example, it is easily shown [20] that at the surface the vector mean curvature is given by the Laplacian of
the closest point function, i.e.,
�jn ¼ r2CP
for any point on the surface S. This vector-valued quantity corresponds to the velocity of the surface under
gradient descent on the surface area, or equivalently, it is the first variational derivative of the surface area,
and thus is a quantity of particular importance. From this, the mean curvature can be determined by

S.J. Ruuth, B. Merriman / Journal of Computational Physics 227 (2008) 1943–1961 1961
j ¼ � r2CP
� �

� n;
where n is a given choice of the unit normal.

References

[1] M. Berger, Finite Element Approximation of Elliptic Partial Differential Equations on Implicit Surfaces, CAM Report 05-46,
University of California, Los Angeles, 2005.

[2] J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, SIAM Review 46 (3) (2004) 501–517.
[3] M. Bertalmı́o, L.T. Cheng, S. Osher, G. Sapiro, Variational problems and partial differential equations on implicit surfaces, Journal

of Computational Physics 174 (2001) 759–780.
[4] M. Bertalmı́o, F. Memoli, L.T. Cheng, G. Sapiro, S. Osher, Variational problems and partial differential equations on implicit

surfaces: bye bye triangulated surfaces? in: S. Osher, N. Paragios (Eds.), Geometric Level Set Methods in Imaging, Vision, and
Graphics, Springer, New York, 2003, pp. 381–398.

[5] Richard L. Burden, J. Douglas Faires, Numerical Analysis, seventh ed., Brooks/Cole, 2001.
[6] L.-T. Cheng, P. Burchard, B. Merriman, S. Osher, Motion of curves constrained on surfaces using a level-set approach, J. Comput.

Phys. 175 (2) (2002) 602–644.
[7] U. Diewald, T. Preufer, M. Rumpf, Anisotropic diffusion in vector field visualization on Euclidean domains and surfaces, IEEE Tran.

Vis. Comput Graph. 6 (2000) 139–149.
[8] J. Dorsey, P. Hanrahan, Digital materials and virtual weathering, Sci. Am. 282 (2) (2000) 282–289.
[9] R. FitzHugh, Fitzhugh–Nagumo simplified cardiac action potential model, Biophys. J. 1 (1961) 445–466.

[10] M.S. Floater, K. Hormann, Surface parameterization: a tutorial and survey, in: N.A. Dodgson, M.S. Floater, M.A. Sabin (Eds.),
Advances in Multiresolution for Geometric Modelling, Heidelberg, 2005, pp. 157–186.

[11] J.B. Greer, An improvement of a recent Eulerian method for solving PDEs on general geometries, J. Sci. Comput. 29 (3) (2006) 321–
352.

[12] J.B. Greer, A.L. Bertozzi, G. Sapiro, Fourth order partial differential equations on general geometries, J. Comput. Phys. 216 (1)
(2006) 216–246.

[13] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.
[14] C.B. Macdonald, S.J. Ruuth, Level set equations on surfaces via the closest point method, submitted for publication.
[15] S. Mauch, Efficient Algorithms for Solving Static Hamilton Jacobi Equations, PhD Thesis, California Institute of Technology,

Pasedena, 2003.
[16] B. Merriman, S.J. Ruuth, Diffusion generated motion of curves on surfaces, J. Comput. Phys. 225 (2) (2007) 2267–2282.
[17] T.G. Myers, J.P.F. Charpin, A mathematical model for atmospheric ice accretion and water flow on a cold surface, Int. J. Heat Mass

Transf. 47 (25) (2004) 5483–5500.
[18] T.G. Myers, J.P.F. Charpin, S.J. Chapman, The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface,

Phys. Fluids 14 (8) (2002) 2788–2803.
[19] S.J. Ruuth, Implicit–explicit methods for reaction–diffusion problems in pattern-formation, J. Math. Biol. 34 (2) (1995) 148–176.
[20] S.J. Ruuth, B. Merriman, S. Osher, A fixed grid method for capturing the motion of self-intersecting interfaces and related PDEs, J.

Comput. Phys. 163 (2000) 1–21.
[21] J. Schnakenberg, Simple chemical-reaction systems with limit-cycle behavior, J. Theor. Biol. 81 (3) (1979) 389–400.
[22] Chi-Wang. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (6) (1988) 1073–1084.
[23] Chi-Wang. Shu, Stanley. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77

(2) (1988) 439–471.
[24] J. Steinhoff, M. Fan, L. Wang, A new Eulerian method for the computation of propagating short acoustic and electromagnetic pulses,

J. Comput. Phys. 157 (2) (2000) 683–706.
[25] J. Strain, Fast tree-based redistancing for level set computations, J. Comput. Phys. 152 (1999) 648–666.
[26] A.M. Turing, The chemical basis of morphogenesis, Roy. Soc. Lond. Philos. Trans. Ser. B 237 (1952) 37–72.
[27] G. Turk, Generating textures on arbitrary surfaces using reaction–diffusion, Comput. Graph. 25 (4) (1991) 289–298.
[28] A. Witkin, M. Kass, Reaction–diffusion textures, Comput. Graph. 25 (4) (1991) 299–308.
[29] J. Xu, H.-K. Zhao, An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput. 19 (1–

3) (2003) 573–594.

	A simple embedding method for solving partial differential equations on surfaces
	Introduction
	The closest point method
	The closest point representation
	The closest point method
	Analysis of the closest point method
	Extension to general PDEs
	Banding

	Numerical experiments in 2D
	Diffusion equation
	Advection equation
	Advection-diffusion equation

	Numerical experiments in 3D
	Diffusion equation
	Advection equation
	Curvature motion
	Diffusion on a filament
	Reaction diffusion systems

	Summary and future work
	Calculation of surface normal and curvature
	References

